Chem. Ber. 102, 38-49 (1969)

Hans Bock und Manfred Schnöller 1)

Untersuchungen an der P=N-Doppelbindung, VIII²⁾

Nachweis der P=N-N=N-S-Struktur des 1:1-Adduktes von p-Toluolsulfonsäureazid an Triphenylphosphin durch ¹⁵N-Isotopenmarkierung

Aus dem Institut für Anorganische Chemie der Universität München (Eingegangen am 1. Juli 1968)

Phosphine können bei der Reaktion mit Aziden in α - oder γ -Position der Stickstoffkette angreifen. Für das in Substanz faßbare Staudinger-Addukt von Triphenylphosphin an Tosylazid belegen Infrarotspektren ¹⁵N-isotopenmarkierter Derivate eine unverzweigte $R_3P=N^{\gamma}-N^{\beta}=N^{\alpha}-X$ -Struktur. Bei der thermischen Zersetzung in Benzol zu N-Tosyl-P-triphenyl-phosphazen (4) wird nach massenspektroskopischen Untersuchungen ausschließlich γ . β - N_2 abgespalten.

Die 1919 von *Staudinger* und *Meyer*³⁾ gefundene Reaktion 2. Ordnung⁴⁻⁷⁾ zwischen Phosphinen und Nichtmetallaziden

$$R_3P + N_3X \iff (R_3PN_3X) \longrightarrow R_3P=NX + N_2$$
 (1)

durchläuft im geschwindigkeitsbestimmenden Schritt einen Zwischenkomplex (R₃PN₃X), für den die Strukturen 1^{4,6,8)} oder 2⁵⁻⁸⁾ diskutiert werden:

Die als "Staudinger-Addukte" bezeichneten Zwischenkomplexe 1 bzw. 2 lassen sich unter anderem mit den Substituenten $R = C_6H_5$ und $X = \alpha$ -Naphthyl³⁾, 9-Phenyl-fluorenyl⁶⁾, o-Carboxyphenyl⁴⁾, Triphenylmethyl⁹⁾ oder Phenylsulfonyl⁷⁾ in Substanz fassen. Aus Triphenylphosphin und p-Toluolsulfonsäureazid entsteht

¹⁾ Diplomarb. M. Schnöller, Univ. München, Juli 1965.

²⁾ VII. Mitteil.: H. Bock und M. Schnöller, Angew. Chem. 80, 667 (1968); Angew. Chem. internat. Edit. 7, 636 (1968).

³⁾ H. Staudinger und J. Meyer, Helv. chim. Acta 2, 635 (1919).

⁴⁾ L. Horner und A. Gross, Liebigs Ann. Chem. 591, 117 (1955).

⁵⁾ J. E. Leffler und R. D. Temple, J. Amer. chem. Soc. 89, 5235 (1967).

J. E. Leffler, U. Honsberg, Y. Tsuno und I. Forsblad, J. org. Chemistry 26, 4810 (1961);
 28, 902 (1963).

⁷⁾ J. E. Franz und C. Osuch, Tetrahedron Letters [London] 1963, 841.

⁸⁾ J. S. Thayer und R. West, Inorg. Chem. 3, No. 6, 406 (1964).

⁹⁾ E. Bergmann und H. A. Wolff, Ber. dtsch. chem. Ges. 63, 1176 (1930).

quantitativ das zitronengelbe und bis $101^{\circ}(!)$ stabile 4-*p*-Toluolsulfonyl-1.1.1-triphenyl-1-phospha V -2.3.4-triaza-butadien-(1.3) (2a) 2,10 , welches demzufolge für 15 N-Isotopenmarkierungen gut geeignet ist. IR-Spektroskopische Untersuchungen an den 15 N Y - und 15 N $^{\beta}$ -Derivaten [15 N Y]-2a und [15 N $^{\beta}$]-2a erlauben über eine Zuordnung des Schwingungsspektrums, zwischen den möglichen Strukturen 1a und 2a zu entscheiden. Zugleich liefert die massenspektroskopische Analyse des thermisch abspaltbaren molekularen Stickstoffs Auskünfte über die irreversible Zersetzungsreaktion:

Bei spektroskopisch gesicherter Struktur des Adduktes, bekannter Masse des abgespaltenen Stickstoffs ($^{28}N_2$, $^{29}N_2$) und durch IR-Isotopenverschiebung 11) charakterisiertem [^{14}N]- oder [^{15}N]Phosphazen-Endprodukt ist eindeutig zwischen α,β - und β,γ -Eliminierung zu unterscheiden.

A. Synthesen der ¹⁵N-isotopenmarkierten Staudinger-Addukte

Die Synthesen der $^{15}N^{\gamma}$ - und $^{15}N^{\beta}$ -Staudinger-Addukte erfolgen nach (4) aus Triphenylphosphin und $[^{15}N^{\gamma}]$ - oder $[^{15}N^{\beta}]$ -p-Toluolsulfonsäureazid:

$$(C_6H_5)_3P + N^{\gamma} - N^{\alpha} - SO_2C_6H_4 - CH_3 - (p) \longrightarrow (C_6H_5)_3P = N^{\gamma} - N^{\beta} = N^{\alpha} - SO_2C_6H_4 - CH_3 - (p)$$
 (4)
 $[^{15}N^{\gamma}] - 2a \text{ bzw. } [^{15}N^{\beta}] - 2a$

Die in Äther bei 0° quantitativ ablaufende Adduktbildung (4) läßt sich ohne Schwierigkeiten in den Mikromaßstab überführen; Luft- und Feuchtigkeitsausschluß durch Verwendung von Reinststickstoff führen zu analysenreinen Produkten mit Schmelzpunkten 97–98°. Die unbekannten [$^{15}N^{\gamma}$]- und [$^{15}N^{\beta}$]- p -Toluolsulfonsäure-azide [$^{15}N^{\gamma}$]-3 und [$^{15}N^{\beta}$]-3 konnten unter Anlehnung an Literaturvorschriften $^{12-15)}$ auf folgenden Wegen erhalten werden:

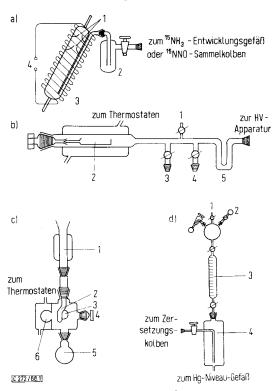
¹⁰⁾ H. Bock und W. Wiegräbe, Angew. Chem. 75, 789 (1963); Angew. Chem. internat. Edit. 2, 484 (1963).

¹¹⁾ H. Bock und W. Wiegräbe, Chem. Ber. 99, 377 (1966).

¹²⁾ Th. Curtius und G. Krämer, J. prakt. Chem. (2) 125, 326 (1930).

¹³⁾ K. Clusius und E. Effenberger, Helv. chim. Acta 38, 1834 (1955).

¹⁴⁾ K. Clusius und H. Schumacher, Helv. chim. Acta 41, 2255 (1958).

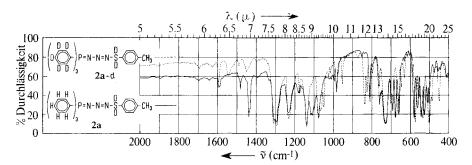

¹⁵⁾ R. Huisgen, L. Möbius, G. Müller, H. Stangl, G. Szeimies und J. M. Vernon, Chem. Ber. 98, 3992 (1965).

$$Na^{15}NO_{2} + H_{2}N-NH-SO_{2}C_{6}H_{4}-CH_{3}-(p) \xrightarrow{+ HOAc} {}^{+ HOAc} \xrightarrow{- N_{a}OAc} {}^{15}N^{\gamma}...N^{\beta}...N^{\alpha}-SO_{2}C_{6}H_{4}-CH_{3}-(p)$$

$$- 2 H_{2}O \qquad [15N^{\gamma}]-3$$
(5)

Die sorgfältige Ausarbeitung der einzelnen Reaktionsschritte im Mikromaßstab führte zu Ausbeuten von 78 % [$^{15}N^{\gamma}$]-3 und 51 % [$^{15}N^{\beta}$]-3, bezogen auf [^{15}N]Natriumnitrit oder [^{15}N]Ammoniumchlorid. Die dabei entwickelten oder modifizierten Ap-

paraturen sind in Abbild. 1 zusammengefaßt.



Abbild. 1. Zur Mikrosynthese von [15N^γ]- und [15N^β]Toluolsulfonsäureazid sowie zur thermischen Zersetzung der ¹⁵N-Staudinger-Addukte entwickelte oder modifizierte Apparaturen: (a) Gefäß zur Darstellung und Zersetzung von ¹⁵NH₄NO₃, (b) flüssigkeitsbeheiztes Reaktionsgefäß zur Darstellung von [15N^β]Calciumdiazid, (c) Sublimationsapparat für [15N]Toluolsulfonsäureazide, (d) Anordnung zur thermischen Zersetzung der ¹⁵N-Staudinger-Addukte

Ergänzend zu den Angaben im Versuchsteil sei erwähnt: Die Ausbeuten der thermischen Zersetzung von [15N]Ammonium-[14N]nitrat zu [15Nβ]Distickstoffoxid lassen sich mit der Zersetzungsapparatur (Abbild. 1a), welche eine Sublimation des in den Glockenböden gebildeten Ammoniumnitrates weitgehend verhindert, auf 80.5% steigern. Die langwierige Darstellung von Calciumdiamid und [15Nβ]Calciumdiazid kann in dem durchsichtigen, mit Glykoldimethyläther thermostatisierten Reaktionsgefäß (Abbild. 1b) bequem beaufsichtigt werden. Zur verlustfreien Reinigung der [15Nγ]- und [15Nβ]Toluolsulfonsäureazide im Mikromaßstab bewährt sich die Sublimationsapparatur (Abbild. 1c), bei der der Kühlfinger unmittelbar neben der Sublimationsbirne angebracht ist, und das bei 50–70° sublimierte Produkt in den darunter befindlichen Kolben übergeführt wird. Bei der Darstellung der Staudinger-Addukte empfiehlt es sich – um Nebenreaktionen durch überschüssiges Triphenylphosphin zu vermeiden 7) – das betreffende Azid vorzulegen.

B. Diskussion der Schwingungsspektren

Die Staudinger-Addukte aus Triphenylphosphin und *p*-Toluolsulfonsäureazid enthalten insgesamt 54 Atome und besitzen daher komplizierte Schwingungsspektren (Abbild. 2), deren Zuordnung (Tab. 1) nur mit zusätzlichen Informationen aus isotopenmarkierten Verbindungen diskutiert werden kann.

Abbild. 2. Schwingungsspektren der Staudinger-Addukte von Toluolsulfonsäureazid an Triphenylphosphin (2a) und Tris-pentadeuterophenyl-phosphin (2a-d)

Zunächst wurden an Hand des P-Tris-pentadeuterophenyl-Derivates 2a-d die P-Phenylschwingungen $^{16,17)}$ aussortiert (Abbild. 2). Die Schwingungen der p-Toluolsulfogruppe ließen sich nach l. c. $^{17,18)}$ zuordnen und sind für die als Zwischenprodukte erhaltenen 15 N 9 -p-Toluolsulfonsäureazide in Tab. 3 (S. 48) zusammengestellt. Das verbleibende Grundgerüst der Staudinger-Addukt-Strukturen A bzw. B gehört

$$N^{\gamma_{>}N^{\beta}} N^{\alpha_{>}P^{\prime}} \qquad \qquad P^{\gamma_{>}N^{\beta}} N^{\alpha_{>}} \qquad \qquad (7)$$

¹⁶⁾ W. Wiegräbe, H. Bock und W. Lüttke, Chem. Ber. 99, 3737 (1966), sowie die dort gegebene Literaturzusammenstellung.

¹⁷⁾ J. R. Durig und C. W. Sink, Spectroehim. Acta [London] 24 A, 575 (1968).

¹⁸⁾ P. Rademacher, W. Wiegräbe und W. Lüttke, Chem. Ber. 100, 1213 (1967).

Tab. 1. Zuordnung der einzelnen Schwingungen in 4-p-Toluolsulfonyl-1.1.1-triphenyl-1-phospha V-2.3.4-triaza-butadien-(1.3) (2a) an Hand der P-Pentadeuterophenyl-, 15 Nγ- und 15 Nβ-isotopenmarkierten Derivate (\tilde{v} = Frequenz, I = Intensität, $\Delta \tilde{v}$ D = Frequenzverschiebung bei Deuterierung im P-Phenyl, $\Delta \tilde{v}^{15}$ Nγ und $\Delta \tilde{v}^{15}$ Nβ = Frequenzverschiebung bei 15 N-Markierung in γ - bzw. β -Position)

 $(C_6X_5)_3P = N^{\gamma} - N^{\beta} = N^{\alpha} - SO_2C_6H_4 - CH_3-(p)$

$X = \tilde{v}[cm^{-1}]$		ṽ[cm−	X = I	D Δ⊽D	ν̃[cm−	15NY 1] <i>I</i>	Δῦ15ΝΥ	ĩ[cm⁻	15 N β 1] <i>[</i>	Δ v 15 N	1β	Zuordnung
3050	s	2284	ss	766	3050	s		3050	s			$\omega_2 = \nu(CH; CD) A_1$
		2253	ss		5050	*		2020				$\omega_{16} = \nu(CD)$ B ₁
2915	SS	2915	SS		2915	SS		2915	SS			vas(CH ₃)
2114	SS	2114	SS		2095	s	-19	2973	S	-41		$v_{as}(-N_3)$, (therm.
												Rückspaltung)
1591	S	1591	m	**	1591	m		1591	m			ω Α1
1581	S	1542 1528	m Sch	- 39	1581	m		1581	m			$\omega_4 = \omega \qquad \qquad \mathbf{A}_1 \\ \omega \qquad \qquad \mathbf{B}_1$
1485	Sch	1485	S		1485	Sch		1485	Sch			ω A_1
1479	m	1340	s	-139	1479	m		1479	m			$\omega_5 = \omega$ A_1
1447	Sch	1447	m		1447	Sch		1447	Sch			νas(CH ₃)
1437	st	1309	st	-128	1437	st		1437	st			$\omega_{18} = \omega$ B_1
1394	SS	1394	SS		1394	SS		1394	SS			ω B ₁
1388	SS	1388	SS		1388	SS		1388	SS			$v_s(CH_3)$
1332	Sch				1332	Sch		1332	Sch			$\omega_{19} = \omega$ B_1
1305	sst				1306	sst	+1	1306	sst	+1	}	$v_{as}(SO_2)$
1295	sst	1294	sst	— 1	1297	sst	+2	1299	st	+4	,	
1282	Sch	1282	Sch		1282	Sch		1281	sst	40		$\omega_{\mathbf{x}}$ \mathbf{A}_{1}
1230	sst	1230	sst		1213	sst	-17	1212	sst	-18		$v_1(P=N)$
1182	m	870	S	-312	1182	m		1182	m			$\omega_7 = \delta(CH; CD) A_1$
1176 1138	m sst	1176 1138	m sst		1176 1138	m sst		1176	m			$\delta(CH)$ A_1 $\nu_s(SO_2)$
1118	st	1068	st	50	1118	st		1138	sst st			V _S (3O ₂)
1109	st	1060	Sch	49	1109	st		1109	st		-)	$\omega_6 = \omega_{\mathbf{X}}$ \mathbf{A}_1
1100	st	1056	st	-44	1100	st		1100	st		J	[,,P-Phenyl (1)"]
1077	st	1077	st	• • •	1077	st		1077	st			$\omega_{\mathbf{x}}$ $\mathbf{A}_{\mathbf{I}}$
		1028	5									$\omega_{20} = \delta(CD)$ B ₁
1025	SS	836	st		1025	SS		1025	SS			$\omega_8 = \delta(CH; CD) A_1$
1016	S	1016	s		1016	S		1016	S			δ(CH) A ₁
992	m	952	m	-40	992	m		992	m			$\omega_9 = \omega$ A_1
980	m	980	m	101	968	m	-12	977	m	3		v₂(NN)
848	S	667	Sch	-181	848	S		848	S			$\omega_{10} = \gamma(CH, CD) A_2$
809 794	st	809 794	st		809 794	st		809 794	st			γ (CH) B_2 ω_x A_1
134	S	760	s m		174	S		194	m			$\omega_{\mathbf{X}} \qquad \qquad \mathbf{A}_1 \\ \omega_{26} = \mathbf{\gamma}(\mathbf{CD}) \qquad \qquad \mathbf{B}_2$
757	m	545	m	-212	757	m		757	m)	
750	s				750	S		750	s		}	$\omega_{27} = \gamma(CH; CD)$ B ₂
728	sst	728	sst		728	sst		728	sst			ν(SN)
734	Sch	700	st	-34	732	Sch	-2	734	Sch		Ĵ	$\omega_{10} = \omega_{\mathbf{X}} \qquad \mathbf{A}_1$
723	Sch	691	m	-32	723	Sch		723	Sch		5	[,,P-Phenyl (2)"]
701	S				701	s		701	S			Γ \mathbf{B}_2
695	Sch	559	m	-136	695	Sch		695	Sch		}	$\omega_{28} = \Gamma$ B_2
690	st	664		12	690	st	2	690	st		,	
677 659	st st	647	st m	-13	675 658	st st	-2 -1	677 659	st st			$\nu_3(\delta PNN)$ ω_X A_1
632	S	632	m	12	632	S		632	S		١	ω _x Aι Βι
613	s	590	m	-23	613	S		613	S		Ţ	$\omega_{23} = \omega$ B_1
603	s	603	s		603	s		603	s		-)	
580	sst	575	sst	-5	580	sst		580	sst			$\delta(SO_2)$
563	st				562	st	-1	563	st			
543	st	537	st	6	543	st		543	st			$\rho(SO_2)$
528	st	506	sst	-21	526	st	-2	527	st	— i		
513	m	500	Sch	-13	512	m	1	513	m			$v_{as} P(C_6H_5); P(C_6D_5)$
503	m	489	m	14	502	m	-1	503	m			
474	S	453			474	s		474	S		,	
	S	453	st		455 447	S		455 447	s		}	Γ B ₂
455												
455 447	s	414	ss		447	S		44 /	S		,	

Intensitäten: sst = sehr stark, st = stark, m = mittelstark, s = schwach, ss = sehr schwach, Sch = Schulter. Die Schwingungen der phosphorständigen Phenylgruppen tragen die Bezeichnungen $\omega_1, \omega_2, \ldots^{24}$.

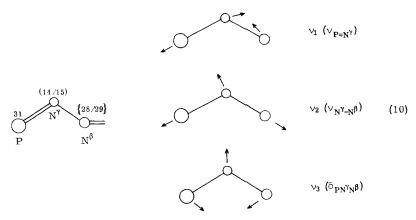
zur Punktgruppe C_s bzw. C_1 , d. h. alle 6 Normalschwingungen der Viermassen-Modelle (7) sollten IR-aktiv sein. Bei ¹⁵N-Isotopenmarkierung in γ- oder β-Position wären demnach in den Schwingungsspektren von [$^{15}N_{\gamma}$]-2a und [$^{15}N^{\beta}$]-2a – verglichen mit dem unmarkierten Derivat 2a – eine entsprechende Anzahl von Frequenzerniedrigungen zu erwarten. Innerhalb des Meßbereiches (4000 bis 400/cm) findet man jedoch nur folgende deutliche Verschiebungen:

	2 a	$[^{15}N^{\gamma}]-2a$	$[^{15}N^{\beta}]$ -2 a	
νı	1230	1213	1212	
v_2	980	968	978	(8)
ν3	677	675	677	

Auffällig ist insbesondere, daß oberhalb 1230/cm keine Isotopenverschiebung beobachtet wird. Struktur A sollte schwingungsspektroskopisch mit N-Nitrosaminen zu vergleichen sein, deren charakteristische Schwingungen 19) in folgenden Bereichen liegen:

R
$$\nu_{(NO)} = 1515-1527/cm$$
 $\nu_{(NN)} = 1030-1070/cm$
 $\nu_{(NNO)} = 640-680/cm$
(9)
(R = Alkyl)

und ist daher auf Grund des Befundes (8) auszuschließen. Einschränkend sei hier angemerkt, daß auch die "Azo-Gruppierung " $N^{\beta}=N^{\alpha}$ der unverzweigten Struktur B trotz der zu erwartenden ¹⁵N-Isotopenverschiebung nicht gefunden wird. Dabei bleibt jedoch offen, inwieweit durch Kopplung der Gruppenfrequenz-Charakter verlorengeht ^{20, 21)}.


Die beobachteten ${}^{15}\text{N-Frequenzerniedrigungen}$ (8) lassen sich verstehen, wenn das Restsystem $P=N^{\gamma}-N^{\beta}=N^{\alpha}-$ unter der Annahme $k_{N^{\beta}=N^{\alpha}}\gg k_{N^{\gamma}-N^{\beta}}$ in grober Näherung mit einem Dreimassen-Modell (10) diskutiert wird, in welchem die Masse N^{β} wegen des nicht zu vernachlässigenden Einflusses der starken $N^{\beta}=N^{\alpha}-$ Bindung $^{22)}$ virtuell erhöht ist. Diese Vereinfachung muß in Kauf genommen werden, da — wie erwähnt — eine N=N- Valenzschwingung in den Derivaten 2a, $[^{15}N^{\gamma}]-2a$, $[^{15}N^{\beta}]-2a$ und 2a-d nicht aufzufinden ist. Das Dreimassen-Modell läßt folgende Schwingungen erwarten:

¹⁹⁾ L. J. Bellamy, The Infrared Spectra of Complex Molecules, Methuen & Co., London, und John Wiley and Sons, Inc., New York, 1958.

²⁰⁾ R. Kübler, W. Lüttke und S. Weckherlin, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 64, 650 (1960), sowie R. Kübler und W. Lüttke, ebenda 67, 2 (1963).

²¹⁾ H. Bock und J. Kroner, Chem. Ber. 99, 2039 (1966).

²²⁾ Vgl. die IR-spektroskopischen Untersuchungen am ¹⁵N-markierten P=N-N=C-System, H. Bock, M. Schnöller und H. tom Dieck, Chem. Ber., im Druck.

Alle 3 Schwingungen enthalten jeweils Valenz- und Deformationsanteile und sind nur näherungsweise mit der P=N-Valenzschwingung ($\nu_1\sim\nu_{P=N}$: 1140–1370/cm) ²⁾, der N-N-Valenzschwingung ($\nu_2\sim\nu_{N-N}$: 800–1000/cm) ^{22,23)} oder der PNN-Deformationsschwingung ($\nu_3\sim\delta_{PNN}$: 550–650/cm) zu identifizieren. Unter Berücksichtigung der angenommenen Schwingungsamplituden (10) sollte nun ¹⁵N $^{\gamma}$ - und ¹⁵N $^{\beta}$ -Isotopenmarkierung zu folgenden Effekten führen:

$$\begin{vmatrix}
\nu_1 : \Delta^{15}N^{\gamma} \sim \Delta^{15}N^{\beta} \\
\nu_2 : \Delta^{15}N^{\gamma} > \Delta^{15}N^{\beta} \\
\nu_3 : \Delta^{15}N^{\gamma} > \Delta^{15}N^{\beta}
\end{vmatrix} \Delta\nu_1 > \Delta\nu_2 > \Delta\nu_3$$
(11)

Ein Vergleich mit den experimentellen Werten (8) bestätigt die Erwartung (11):

Für eine α -Addukt-Struktur A würde ein (10) entsprechendes Dreimassen-Modell dagegen andere relative Frequenzerniedrigungen Δv_1 , Δv_2 und Δv_3 bei $^{15}N^{\gamma}$ - und $^{15}N^{\beta}$ -Isotopenmarkierung voraussagen.

Die vorstehende Diskussion der Schwingungsspektren spricht somit für eine geradkettige Struktur B der Staudinger-Addukte von p-Toluolsulfonsäureazid an Triphenylphosphin.

C. Thermische Zersetzung des Staudinger-Adduktes

Aus den zur IR-spektroskopischen Strukturaufklärung synthetisierten $^{15}N^{9}$ - und $^{15}N^{9}$ -isotopenmarkierten Staudinger-Addukten lassen sich zugleich Informationen über ihre thermische Zersetzung erhalten:

$$(C_6H_5)_3P=N-N-SO_2C_6H_4-CH_3-(p)$$
 \xrightarrow{T} $(C_6H_5)_3P=N-SO_2C_6H_4-CH_3-(p)+N_2$ (13)

²³⁾ P. A. Giguere und I. D. Liu, J. chem. Physics 20, 136 (1952).

²⁴⁾ E. W. Schmid, J. Brandmüller und G. Nonnenmacher, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 64, 726 (1960).

Diese verläuft je nach den Bedingungen unterschiedlich: Beim Erhitzen über den Schmelzpunkt entstehen in heftiger Reaktion 71 % N_2 , in Dimethylformamid-Lösung bei 20° nur 40 % N_2 . Als vorteilhaft erweist sich die Zersetzung in Benzol-Suspension bei 60°, die 91 % N_2 und — im Gegensatz zu den erstgenannten Umsetzungen — einen kristallinen Rückstand aus N-p-Toluolsulfonyl-triphenylphosphinimin (4) liefert.

Für die Abspaltung zweier benachbarter Stickstoffatome bestehen zwei Möglich-

(a)
$$R_3P = N^{\gamma} - N^{\beta} = N^{\alpha} - X$$
 (b) $R_3P = N^{\gamma} - N^{\beta} = N^{\alpha} - X$

$${}^{15}N^{\gamma}: {}^{29}N_2 \qquad {}^{15}N^{\beta}: {}^{29}N_2 \qquad {}^{15}N^{\beta}: {}^{29}N_2 \qquad {}^{15}N^{\beta}: {}^{29}N_2$$

keiten, zwischen denen sich an Hand der Masse des aus den $^{15}N^{\gamma}$ - und $^{15}N^{\beta}$ -isotopenmarkierten Staudinger-Addukten abgespaltenen Stickstoffs sowie an Hand der P=N-Valenzschwingungsfrequenzen im gebildeten Phosphinimin 4 ($\nu_{P=14N}=1147/\text{cm}$; $\nu_{P=15N}=1124/\text{cm}$) 16 0 eindeutig entscheiden läßt. In Tab. 2 sind die gefundenen Isotopenmuster denjenigen gegenübergestellt, die sich für den Reaktionsweg (14a) unter Berücksichtigung des natürlichen ^{15}N -Gehaltes (0.37%) und der ^{15}N -Anteile in den Ausgangsprodukten Na $^{15}NO_2$ (96.7%) und $^{15}NH_4Cl$ (95.4%) berechnen.

Tab. 2. Experimentelle und berechnete Isotopenmuster für die N $^{\gamma}$ N $^{\beta}$ -Stickstoffabspaltung aus 15 N $^{\gamma}$ - und 15 N $^{\beta}$ -markierten Staudinger-Addukten in Benzolsuspension

		$^{28}\mathrm{N}_2$	$^{29}N_{2}$	$^{30}N_2$
exp. [15NY]-2a	a)	8.1	91.6	0.3
ber. 96.7% Na ¹⁵ NO ₂	b)	3.3	96.3	0.4 (15)
exp. [¹⁵ Nβ]- 2 a	a)	5.4	94.2	0.4
ber. 95.4% NH ₄ Cl	b)	4.6	95.0	0.4

a) Die Differenzen zu den berechneten Werten sind durch Restluft in der Zersetzungs- und Meßapparatur bedingt. Die Zersetzung von [15Nβ]-2a wurde in Argon-Atmosphäre durchgeführt.

Die in der Zersetzungsapparatur (Abbild. 1d) in Benzol durchgeführte Stickstoffabspaltung aus den $^{15}N^{\gamma}$ - und $^{15}N^{\beta}$ -isotopenmarkierten Staudinger-Addukten belegt hier eindeutig eine $N^{\gamma}N^{\beta}$ -Eliminierung (14a). Die P=N-Valenzschwingungsfrequenz des entstehenden [^{14}N]-p-Toluolsulfonyl-triphenylphosphinimins (4) beträgt übereinstimmend 1147/cm.

Im Gegensatz zur gemäßigten intramolekularen Stickstoff-Abspaltung im inerten Reaktionsmedium Benzol liefern die heftige Zersetzung in Substanz oberhalb des Schmelzpunktes oder die langsame Umsetzung in Dimethylformamid-Lösung unreine Reaktionsrückstände. Auch das Isotopenmuster des nur unvollständig freigesetzten Stickstoffs (28 N₂: 29 N₂ \sim 39: 60) spricht hier für (Redox-)Nebenreaktionen wie sie *Franz* und $Osuch^{7}$) bei der Umsetzung von Phenylsulfonsäureazid mit Triphenylphosphin in Acetonitril nachgewiesen haben:

$$4 R_3 P + 2 N_3 SO_2 R \rightarrow 4 R_3 PO + 2 (RSN_3) \rightarrow RSSR + 3 N_2$$
 (16)
 $R = C_6 H_5$

b) Berechnet unter Vernachlässigung von isotopeneffekten 14) bei der Synthese von [15ΝΥ]-2a und [15Νβ]-2a.

Da der ¹⁵N-Gehalt des Staudinger-Adduktes insgesamt nur rund ¹/₃ beträgt, wäre hier bei quantitativem Reaktionsablauf und bei vollständiger Entfernung der Restluft aus der Zersetzungsapparatur ein Verhältnis ²⁸N₂: 29 N₂ = 1 /₃: 2 /₃ zu erwarten.

Für die thermische Zersetzung von Staudinger-Addukten in Benzol, die zu 91% nach Gl. (13) abläuft, stützt die nachgewiesene $N^{\gamma}N^{\beta}$ -Eliminierung den von Leffler und Temple⁵⁾ postulierten Vierring-Übergangszustand:

$$\begin{array}{ccc}
R_{3}P & \longrightarrow & \overline{N}^{\alpha} - X \\
& & & \downarrow & \uparrow \\
\overline{N}^{\gamma} & & \searrow & \uparrow \\
\overline{N}^{\gamma} & & \longrightarrow & \begin{pmatrix}
R_{3}P & \longrightarrow & \overline{N}^{\alpha} - X \\
IN^{\gamma} & & NI^{\beta}
\end{pmatrix}
\longrightarrow
\begin{array}{c}
R_{3}P & = \overline{N}^{\alpha} - X \\
+ & \downarrow & \uparrow \\
IN^{\gamma} & = NI^{\beta}
\end{array}$$
(17)

Aus einem trans-Staudinger-Addukt könnte ein solcher Übergangszustand z. B. durch Rotation um die $N^{\gamma}-N^{\beta}$ -Bindung und anschließenden konrotatorischen Ringschluß erreicht werden.

Die vorliegende Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt. Herrn Dr. H. Günther danken wir für die Aufnahme der Massenspektren, Herrn Dr. H. tom Dieck für Diskussionsbemerkungen zur Zuordnung der Schwingungsspektren.

Beschreibung der Versuche

Die Infrarotspektren wurden mit einem Perkin-Elmer-Gitterspektrographen 125 aufgenommen. Da sich die Staudinger-Addukte während der Messung langsam zersetzen, wurde für jeden Bereich (5000-2000, 2000-800 und 1000-400/cm) ein eigener KBr-Preßling verwendet und nach der Aufnahme jeweils das Fehlen der asymmetrischen Tosylazidschwingung bei 2080-2120/cm sowie der P=N-Valenzschwingung bei 1212-1230/cm überprüft. Die Toluolsulfonsäureazide wurden als Flüssigkeiten zwischen KBr-Fenstern vermessen.

4-p-Toluolsulfonyl-1.1.1-triphenyl-1-phospha^V-2.3.4-triaza-butadien-(1.3) (2a): 10 mMol Triphenylphosphin (2.6 g) in 40 ccm Äther werden in Stickstoffatmosphäre unter Rühren und Eiskühlung zu 10 mMol Tosylazid (2.0 g) in 30 ccm Äther getropft. Den ausfallenden Niederschlag trennt man unter Luft- und Feuchtigkeitsausschluß mit einer Fritte ab, wäscht dreimal mit je 10 ccm Äther und trocknet bei 10⁻⁴ Torr, Ausb. 4.4 g (96%), Schmp. 101°.

 $C_{25}H_{22}N_3O_2PS$ (459.6) Ber. C 65.33 H 4.83 N 9.14 Gef. C 64.99 H 4.82 N 8.76

15N-markierte Verbindungen

 $[15N^{\gamma}]$ -p-Toluolsulfonsäureazid ($[15N^{\gamma}]$ -3): 1.3 mMol p-Toluolsulfonsäurehydrazid (240 mg) werden in 2 ccm Äthanol gelöst und in 65 ccm Eiswasser eingegossen. Zu der mit 2.6 ccm Eisessig angesäuerten Suspension tropft man langsam eine Lösung von 1.4 mMol [15N]Natriumnitrit (99 mg, 15N-Gehalt 96.7%, O. N. 1. A. Paris 8, Avenue Hoche 40) in 2 ccm Wasser. Gegenüber der Literaturvorschrift12) rührt man die Lösung vorteilhaft bei 0° bis zum Ausflocken von $[15N^{\gamma}]$ -3, das in einer gekühlten Mikronutsche abgesaugt und im Exsikkator über Phosphorpentoxid und Natriumhydroxid getrocknet wird. Die Sublimation bei 10^{-4} Torr und $50-60^{\circ}$ in der Mikrosublimationsapparatur (Abbild. 1c) liefert 200 mg (78%) reines $[15N^{\gamma}]$ -3 mit Schmp. 22°.

C₇H₇N₂¹⁵NO₂S (198.2) Ber. N 21.70 Gef. N 21.77

[$^{15}N^{\beta}$]-p-Toluolsulfonsäureazid ([$^{15}N^{\beta}$]-3)

- a) $[^{15}N^{\beta}]Distickstoffoxid$: Eine Lösung von 7.7 mMol $[^{15}N]Ammoniumchlorid$ (420 mg, ^{15}N -Gehalt 95.4%, O. N. I. A. Paris 8, Avenue Hoche 40) in 4 ccm Wasser wird in der von Clusius und Effenberger 13) beschriebenen Apparatur mit festem Kaliumhydroxid umgesetzt. Das entwickelte $[^{15}N]Ammoniak$ reagiert im angeschlossenen Zersetzungsgefäß (Abbild. 1a) mit 0.625 ccm vorgelegter konz. Salpetersäure zu $[^{15}N]Ammonium-[^{14}N]nitrat$. Nach Stehenlassen über Nacht wird das gebildete Wasser bei 10^{-2} Torr abgepumpt, durch Beheizen des Gefäßes auf 200° eine langsame Zersetzung des $[^{15}N]Ammonium-[^{14}N]nitrates eingeleitet und das gebildete <math>[^{15}N^{\beta}]Distickstoffoxid$ nach Passieren einer -78° -Kühlfalle bei -196° ausgefroren. Eventuell sublimiertes $[^{15}N]Ammonium-[^{14}N]nitrat läßt sich mit dem Kondenswasser erneut in das Zersetzungsgefäß zurückspülen. Die Gesamtausbeute beträgt 279 mg <math>(80.5\%)$ $[^{15}N^{\beta}]$ Distickstoffoxid.
- b) $(^{15}N]$ Natriumazid: Im Eisenschiffchen der in Abbild. 1 b wiedergegebenen Anordnung werden 17.5 mMol frisch geschnittene Calciumspäne (0.7 g) mit über Natriumasbest getrocknetem (^{14}N) Ammoniakgas bis zur Druckkonstanz zu $Ca(NH_3)_6$ umgesetzt 14). Erwärmen des Reaktionsgefäßes durch Flüssigkeitsbeheizung auf 60° liefert Calciumdiamid, das bei 10^{-2} Torr weiter 4 Stdn. auf 100° erhitzt wird. Aus der angeschlossenen gekühlten Falle wird nun portionsweise $(^{15}N^\beta)$ Distickstoffoxid in das Reaktionsgefäß verdampft, wobei jeweils nach 12 Stdn. die bei der Umsetzung entstandenen Gase über eine -196° -Kühlfalle abgepumpt $(N_2 + H_2)$ oder in einer mit konz. Schwefelsäure gefüllten Falle (NH_3) absorbiert werden. Nach insgesamt 72 Stdn. ist der Ausgangsdruck von 400 Torr nahezu wieder erreicht. Überschüssiges Calciumamid zerstört man durch 3 stdg. Durchsaugen von Luft mit Hilfe einer Wasserstrahlpumpe.

Der Inhalt des Eisenschiffchens wird in einen 250-ccm-Kolben übergeführt, vorsichtig mit Wasser versetzt und die Lösung mit halbkonz. Schwefelsäure auf pH 5 (Kontrastindikator) angesäuert. Die freigesetzte $[^{15}N^{\beta}]$ Stickstoffwasserstoffsäure wird in 55 ccm vorgelegte n/10 NaOH destilliert und die Lösung gegen Phenolphthalein mit n/10 HCl neutralisiert. Der beim Eindampfen erhaltene Rückstand mit 4.9 mMol $[^{15}N^{\beta}]$ Natriumazid (79 %, bez. auf $[^{15}N^{\beta}]$ Distickstoffoxid) läßt sich ohne weitere Reinigung mit Toluolsulfochlorid umsetzen.

c) $[^{15}N^{\beta}]$ -p-Toluolsulfonsäureazid ($[^{15}N^{\beta}]$ -3): 4.9 mMol $[^{15}N]$ Natriumazid (324 mg) in 2 ccm Wasser tropft man bei 0° langsam unter Rühren zu einer Lösung von 5.2 mMol p-Toluolsulfochlorid (990 mg) in 4 ccm Aceton $^{15)}$. Nach 2 Stdn. wird die Aceton-Phase in die Sublimationsapparatur (Abbild. 1 a) übergeführt und dort bei 10 Torr das Lösungsmittel abgezogen. Nach 2 Stdn. Trocknen bei 10^{-4} Torr über Phosphorpentoxid wird $[^{15}N^{\beta}]$ -3 bei 70° Badtemp. an den auf -78° gekühlten Finger der Apparatur (Abbild. 1 c) sublimiert. Ausb. 780 mg (80.5%) mit Schmp. 20° .

15Nγ- und 15Nβ-Staudinger-Addukte [15Nγ]-2a und [15Nβ]-2a: Zu 0.55 mMol [15Nγ]-p-Toluolsulfonsäureazid ([15Nγ]-3) (108 mg) in 2 ccm absol. Äther werden unter feingereinigtem Stickstoff bei 0° 0.57 mMol Triphenylphosphin in 3 ccm absol. Äther getropft. Nach 10 Min. Rühren wird das ausgeflockte [15Nγ]-2a in einer Mikrofritte abgenutscht, mehrmals mit wenig Äther gewaschen und bei 10^{-4} Torr getrocknet. Ausb. 222 mg (88.5%) mit Schmp. 97—98°.

C₂₅H₂₂N₂¹⁵NO₂PS (460.6) Ber. C 65.18 H 4.82 N 9.35 Gef. C 65.30 H 5.03 N 9.50

[$^{15}N^{\beta}$]-2a wird in analoger Weise aus 0.17 mMol [$^{15}N^{\beta}$]-3 (33 mg) mit 0.17 mMol *Triphenyl-phosphin* (44 mg) erhalten. Ausb. 51 mg (67%) mit Schmp. 97–98°

C₂₅H₂₂N₂15NO₂PS (460.6) Ber. N 9.35 Gef. N 9.05

Tab. 3. Zuordnung der Schwingungsspektren in p-Toluolsulfonsäureaziden (\tilde{v} = Frequenz, $\Delta \tilde{v}^{15}N^{\gamma}$ = Frequenzverschiebung bei ^{15}N -Markierung in γ -Position, $\Delta \tilde{v}^{15}N^{\beta}$ = Frequenzverschiebung bei ^{15}N -Markierung in β -Position, I = Intensität)

ÿ [cm ⁻¹] in KBr	I	Δζ15ΝΥ	Δÿ15 N β	Zuordnung
3090 3055	SS S) y(CH)
3030	Sch) (CII)
2920	S			$v_{as}(CH_3)$
2865	SS			$v_s(CH_3)$
2114	sst	-19	41	$v_{as}-N_3$
1593	st			ω A_1
1492	m			ω A_1
1448	s			$\delta_{as}(CH_3)$
1395	s			ω B ₁
1368	sst			$v_{as}(SO_2)$
1305	s			δ (CH) B_1
1293	s			ω B ₁
1210	Sch			$\omega_{\mathbf{x}}$ A ₁
1187	st			$\delta(CH)$ A ₁
1165	sst			$\nu_{\rm s}({ m SO}_2)$
1119	s			$\delta(CH)$ B_1
1083	st			ω_{x} A_{1}
1038	S			$\rho(CH_3)$
1015	s			δ (CH) A_1
835	Sch			γ (CH) A_2
812	st		-1	γ (CH) B ₂
797	S			ω_{x} A_1
744	sst		4 1 6	v_S-N
700	m		1	Γ B_2
660	sst		-6	$\omega_{\mathbf{x}} \qquad \mathbf{A}_{1}$
631	S			ω B_1
591	sst			$\delta(SO_2)$
538	st			$\rho(SO_2)$
498	S			Γ B ₂

Intensitäten: sst = sehr stark, st = stark, m = mittelstark, s = schwach, ss = sehr schwach, Sch = Schulter

4-p-Toluolsulfonyl-1.1.1-tris-pentadeuterophenyl-1-phospha^V-2.3.4-triaza-butadien-(1.3) (2a-d)

a) Tris-pentadeuterophenyl-phosphin: Zur Grignard-Lösung aus 55 mMol Pentadeuterobrombenzol (9.0 g) und 55 mg-Atom Magnesium (1.3 g) in 30 ccm absol. Äther werden unter Reinstickstoff bei 0° 11 mMol Phosphortrichlorid (1.5 g) in 10 ccm absol. Äther langsam eingetropft. Nach weiterem 1 stdg. Rühren zersetzt man mit 3.5 ccm 20proz. DCl und 20 ccm D_2O . Unter Stickstoff wird die Ätherschicht abgehebert, die wäßrige Phase mehrfach mit Äther extrahiert und die vereinigten Ätherauszüge eingedampft. Destillation bei 10^{-2} Torr und einer Badtemp. von 200° liefert 2.7 g des Tris-pentadeuterophenyl-phosphins (80%), das

C₁₈D₁₅P (277.4) Ber. C 77.42 D 10.90 Gef. C 77.93 D 10.92

nach viermaligem Umkristallisieren unter Stickstoff einen Schmp. von 76° aufweist.

b) Staudinger-Addukt 2a-d: Die Umsetzung von je 0.1 mMol Tris-pentadeuterophenylphosphin und p-Toluolsulfonsäureazid erfolgte analog der Darstellung von [$^{15}N^{\gamma}$]-2a und [$^{15}N^{\beta}$]-2a, das erhaltene 2a-d mit Schmp. 97–98° (nach Umfällen aus Chloroform/Äther) wurde IR-spektroskopisch charakterisiert.

Thermische Zersetzungen der Staudinger-Addukte

- a) Erhitzen von 1 mMol 2a (460 mg) in einer Zersetzungsapparatur mit Sublimationsfinger bei 10⁻⁴ Torr auf 106° liefert neben 18 ccm (710 Torr, 18°) *Stickstoff* (0.74 mMol) etwa 0.03 g *Tosylazid* (0.15 mMol), das IR-spektroskopisch identifiziert wurde. Aus dem glasigen Rückstand ließ sich kein definiertes Produkt isolieren.
- b) 0.178 mMol [15NY]-2a (82.0 mg) werden in einer Mikrozersetzungsapparatur bedeckt mit einem Glasscheibchen um Zerstäubungsverluste zu vermeiden langsam erhitzt. Bei 106° Badtemperatur entwickeln sich beim Schmelzen 3.24 ccm (710 Torr, 18°) Stickstoff (0.127 mMol), die in der Mikrobürette (Abbild. 1 d) gasvolumetrisch bestimmt und anschließend in Mikrokölbchen übergeführt werden. Die massenspektroskopische Analyse in einem Krupp MAT CH₄-Spektrometer ergibt für die Massenpeaks 28: 29: 30 ein Intensitätsverhältnis 38.6: 59.4: 2.0.
- c) Auf 0.138 mMol [15NY]-2a (63.7 mg) werden in einem Mikrokölbchen 2.5 ccm Dimethylformamid aufkondensiert. Die gelbe Lösung entwickelt bei 20° unter Entfärbung langsam 1.84 ccm (551 Torr, 24°) Stickstoff (0.055 mMol), dessen massenspektroskopische Analyse für die Massenpeaks 28, 29 und 30 ein Intensitätsverhältnis 39.0: 60.7: 0.3 liefert.
- d) $0.152 \text{ mMol} [15N^{\gamma}]-2a$ (70.0 mg) werden mit 10 ccm reinem Benzol in einem Mikrokölbchen eingefroren und nach Evakuieren auf 10^{-4} Torr auf 60° erwärmt, bis die gelbe Farbe der Suspension verschwindet. Nach Abkondensieren des Benzols in eine vorgeschaltete, mit flüssigem Stickstoff gekühlte Falle lassen sich 3.57 ccm (711 Torr, 27.1°) Stickstoff (0.136 mMol) gasvolumetrisch bestimmen, der nach massenspektroskopischer Analyse aus $^{28}N_2: ^{29}N_2: ^{30}N_2 = 8.1: 91.6: 0.3$ besteht. Der kristalline Rückstand schmilzt nach Umkristallisieren aus Benzol bei $193^{\circ}16$) und wird IR-spektroskopisch als (^{14}N) -p-Toluolsulfonyl-triphenylphosphinimin (4) mit $v_{P=N} = 1147$ /cm identifiziert.
- e) In gleicher Weise liefern $0.130 \,\text{mMol} \, [^{15}\text{N}^{\beta}]$ -2a (60.0 mg) insgesamt 2.16 ccm (715 Torr, 23°) Stickstoff (0.089 mMol) der Isotopenverteilung $^{28}\text{N}_2$: $^{29}\text{N}_2$: $^{30}\text{N}_2$ = 5.4: 94.2: 0.4.

[272/68]